Should we use R or Python? Yes.
Amost everything that used to make Python awesome that wasn’t in R has been since ported over to R.
And everything that used to make R awesome that wasn’t in Python has been since ported over to Python.
🌍 Environment management
📦 Package choices
📝 Documentation
“But it works on my machine”
Operating System & Python / R Version
Package Version
uv
, venv
, pipenv
, etc.#' Round a number *up* to a
#' certain number of digits.
#'
#' @param x (double) The value
#' to be rounded.
#' @param dig (int) The
#' number of digits to round
#' to.
#'
#' @return The rounded number.
#'
#' @examples
#' # This returns `2.15`
#' round_up(2.141, 2)
round_up <- function(x, dig) {
f <- 10 ** dig
out <- ceiling(x * f) / f
return(out)
}
def round_up(x, dig):
"""
Round a number *up* to a
certain number of digits.
Parameters
----------
x : float
The value to be
rounded.
dig : int
The number of digits to
round to.
Returns
-------
float
The rounded number.
Examples
--------
>>> round_up(2.141, 2)
2.15
"""
f = 10 ** dig
out = np.ceil(x * f) / f
return out
#' Round a number *up* to a
#' certain number of digits.
#'
#' @param x (double) The value
#' to be rounded.
#' @param dig (int) The
#' number of digits to round
#' to.
#'
#' @return The rounded number.
#'
#' @examples
#' # This returns `2.15`
#' round_up(2.141, 2)
round_up <- function(x, dig) {
f <- 10 ** dig
out <- ceiling(x * f) / f
return(out)
}
def round_up(x, dig):
"""
Round a number *up* to a
certain number of digits.
Parameters
----------
x : float
The value to be
rounded.
dig : int
The number of digits to
round to.
Returns
-------
float
The rounded number.
Examples
--------
>>> round_up(2.141, 2)
2.15
"""
f = 10 ** dig
out = np.ceil(x * f) / f
return out
#' Round a number *up* to a
#' certain number of digits.
#'
#' @param x (double) The value
#' to be rounded.
#' @param dig (int) The
#' number of digits to round
#' to.
#'
#' @return The rounded number.
#'
#' @examples
#' # This returns `2.15`
#' round_up(2.141, 2)
round_up <- function(x, dig) {
f <- 10 ** dig
out <- ceiling(x * f) / f
return(out)
}
def round_up(x, dig):
"""
Round a number *up* to a
certain number of digits.
Parameters
----------
x : float
The value to be
rounded.
dig : int
The number of digits to
round to.
Returns
-------
float
The rounded number.
Examples
--------
>>> round_up(2.141, 2)
2.15
"""
f = 10 ** dig
out = np.ceil(x * f) / f
return out
#' Round a number *up* to a
#' certain number of digits.
#'
#' @param x (double) The value
#' to be rounded.
#' @param dig (int) The
#' number of digits to round
#' to.
#'
#' @return The rounded number.
#'
#' @examples
#' # This returns `2.15`
#' round_up(2.141, 2)
round_up <- function(x, dig) {
f <- 10 ** dig
out <- ceiling(x * f) / f
return(out)
}
def round_up(x, dig):
"""
Round a number *up* to a
certain number of digits.
Parameters
----------
x : float
The value to be
rounded.
dig : int
The number of digits to
round to.
Returns
-------
float
The rounded number.
Examples
--------
>>> round_up(2.141, 2)
2.15
"""
f = 10 ** dig
out = np.ceil(x * f) / f
return out
#' Round a number *up* to a
#' certain number of digits.
#'
#' @param x (double) The value
#' to be rounded.
#' @param dig (int) The
#' number of digits to round
#' to.
#'
#' @return The rounded number.
#'
#' @examples
#' # This returns `2.15`
#' round_up(2.141, 2)
round_up <- function(x, dig) {
f <- 10 ** dig
out <- ceiling(x * f) / f
return(out)
}
def round_up(x, dig):
"""
Round a number *up* to a
certain number of digits.
Parameters
----------
x : float
The value to be
rounded.
dig : int
The number of digits to
round to.
Returns
-------
float
The rounded number.
Examples
--------
>>> round_up(2.141, 2)
2.15
"""
f = 10 ** dig
out = np.ceil(x * f) / f
return out
Anatomy of a Good Issue
An overview of the issue or proposed enhancement, including rationale.
Some code that someone else can run to reproduce the issue or show the current shortfall that the proposed enhancement will overcome.
Discussion (possibly including code) regarding possible solution(s).
Anatomy of a Good Pull Request
The purpose of the pull request and the associated Issue(s) it addresses.
The technical aspects of how the Issue was addressed in code, as well as any design decisions that were made along the way and/or hurdles that were overcome.
Provide instructions and code that the reviewer can run to see the impact of your changes.
https://ketchbrookanalytics.github.io/multilingual-data-science-presentation